BMSCW LIBRARY QUESTION PAPER

BMS COLLEGE FOR WOMEN AUTONOMOUS BENGALURU-560004

END SEMESTER EXAMINATION – OCTOBER 2022 (CBCS) M.Sc. in Chemistry- II Semester Physical Chemistry-II

Course Code:MCH203T Duration: 3 Hours

Instruction: Answer Question No. 1 and any FIVE of the remaining.

- 1. Answer any *TEN* questions
- a) What is de-Donder's inequality?
- b) What are partial molar quantities? Give examples.
- c) Mention the significance of partition function.
- d) What are coupled and non-coupled reactions?
- e) Calculate the molecular rotational partition function of N₂ gas at 25 0 C, the moment of inertia of N₂ gas is 1.39×10^{-48} kg m².
- f) Differentiate between canonical and micro-canonical ensembles.
- g) Give the significance of ionic atmosphere.
- h) Explain triple ion conductance minima.
- i) How electrocatalysis is different from chemical catalysis?
- j) Explain the need for expelling oxygen from polarographic cell before starting the reaction.
- k) Give Ilkovic equation and mention the terms involved in it.
- l) What is meant by surface excess?

2. a) Derive Gibbs Duhem equation.

- b) Explain the solubility method for determination of activity coefficient.
- c) Deduce equations for excess Gibbs free energy and excess entropy functions. (4+ 3+3)

(1.0.0)

 $(2 \times 10 = 20)$

OP Code:21009

Max marks: 70

BMSCW LIBRARY

BMSCW LIBRARY QUESTION PAPER

3 . a) Derive Bose-Einstein statistical distribution equation.	
b) Obtain an expression for translational partition function.	(5+5)
4. a) Explain the concept of uncompensated heat and relate it to various thermodynami	c
quantities.	
b) Deduce an expression for Onsager's reciprocity relations.	(5+5)
5 . a) Derive the Debye-Huckel-Onsager conductance equation.	
b) Describe the experimental technique to determine the interfacial tension as a funct	ion of
applied potential across the interface.	(5+5)
6. a) Discuss Gouy-Chapmann theory of structure of electrified interface and list out the	3
limitations of the theory.	
b) Deduce Butler-Volmer equation.	(5+5)
7. a) Explain the graphical method in determination of fugacity of real gas.	
b) Write note on concentration and activation over potential.	
c) Explain the entropy production in a closed system containing two phases.	(4+3+3)
8 . a) Write a note on semiconductor-solution interface.	
b) Deduce the relationship between partition function and equilibrium constant.	
c) Explain the Bjerrum's theory of ion association.	(4+3+3)
